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MAGNETIC GAS DYNAMIGS

V.A.Rykov (Moscow)

To supplement previous reports on one-dimensional axisym-
metric motions of an electrically conducting gas in a mag-
netic field, when the velocity can be represented by a formula
of type v = r2(t), the paper considers flows for which the
velocity components depend linearly on the distance coordi-
nates, but where the flow is no longer one-dimensional. The
motion of the gas is assumed to be two-dimensional, and the
magnetic field is taken as perpendicular to the plane of flow,
The solution obtained depends on an arbitrary function and
several arbitrary constants., The case is considered where a
uniform expansion of the gas takes place along the magnetic

field, at a two-dimensional flow transverse to it.

1. The system of equations of magnetic gas dynamics (Bibl.l, 2) describing
two—-dimensional nonstationary motion of the gas in a magnetic field perpendicu-

lar to the plane of flow, has the form* /916
n du du __ 190
wtrateomy =

(1.1)

‘8H oH oH

du U
S e ey HH(G )=
% BEverywhere in this Section, we assume v = (O,

3¢ Numbers in the margin indicate pagination in the original foreign text.
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where u, v are the components of the ve1001ty vector, p the pressure, p the
density, H the magnetic field strength, t the time, and x, y rectangular Car-

tesian coordinates, The gas is assumed to possess infinite electric conductivi-

ty.
Let us introduce new sought functions and new indeperdent variables by
means of the relations
x
’ 3 f(t) ’ n w(t) .
I g :
Yy = U — 7‘2, vl=v—“-\%‘"~ (102)

The quantities p, ¢ and H will be left as before, For the operations of

differentiation we will have

a ? f @ V. 9

W TFCTE VI
2 19 8 _ 19 (1.3)
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If the system of equations (1.1) is transformed to a new form by means of
egs.(1.2), (1.3) and if we put uy; = v; = 0, we will obtain

re-d k). egd b E)
=0,

Lonlle )0 Hamlfrgoe G

The last three equations of the system (1..) yield

Po(E, m) g e ) e, )
p = I ) = ) ’ P fywy .

where p, (€, T), ho(E, M) and p,(€, M) are arbitrary functions, Substituting the
expressions for p, H, and p into the first two equations of the system (1.L),
we obtain

J7E = —f Yl RER e 1 o _k_;_ 1.
Po OE ™ po OE (38) ’ ( 2
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The variables are separated if we assume that /9LT
14 1 a8 .
e PO W: ang, E %’qﬂ_ = bﬂ‘]':’ﬁf;
" (1.6)
19 (ﬁ) 108
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To determine the functions f and § we have the system of equations
. 1 Y oy 2—Y - Ui i (l 7)
I=—af T ), T = — W (P )
where a, b, n and m are arbitrary constants.

The system of equations (1.6) is easily integrated, yielding

P=dtnF(2 §’+—n’) p=F (g 2w,
h§=su{c+mF (%E,'-l—% n‘)]

wm

where F is an arbitrary function, and d and ¢ are arbitrary constants.

Thus, we have

P [ 4ar (S8 o w)], e=rr (Se o o),
..,;E==snr=¢'=[c+m1r (?gz + % n2>], ;= vy =0,

Returning to the original variables and using egs.(1.2), we obtain the

following solution of the system of equations (1.1):

—}' ——%y, =r*~b’*ld+nr(a)l,

B =8af %t o+ mF )], p=f¥F (), amy

= 2% (1.8)

Since the functions f and ¢ enter into the system of equations (1.7), which
is to some degree dependent on vy, only the positive solutions of the system of
equations (1.7) need be considered., From the condition that o be positive, it

++ W' l~r) S 0 &g
Lo < \sA/’ ~

3
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satisfied, It follows from the expressions for pressure and density that
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Hence, it is clear that the arbitrary function F(¢) is determined by pre-
scribing the entropy distribution among the fluid particles at a certain instant
of time.

A cylindrical surface on which, at a certain instant of time t,, the pres-

sure, density, and magnetic field strength are all equal is of the form

yl
¢ = (a3 = comst).

o] o

a 2%
Tt

On any of such cylindrical surfaces the total pressure, which is the sum

of the magnetic and hydrodynamic pressures, will depend only on the time i:
mn — Yot =Y
P.=p + gy =1V [d+nF ()] +VH7 o+ mF @]

It is easy to demonstrate that the surface under COnsiderafion will at all
times consist of the very same fluid particles, On the basis of the above, such
a surface may be taken as the free boundary of the conducting gas in the mag-
netic field, In this case the total pressure p, on the boundary will be
balanced by the pressure of the external magnetic field H5/8w, i.e., /918

p,=Hix. (1.9)

From this we find the intensity of the external magnetic field as a func-
tion of time.

Depending on the values of the parameters a, b, ¢, and «, this boundary may
be an ellipse, a hyperbola, or a pair of intersecting straight lines.

Let us consider the case when a >0, b >0, n > Cand m > C.

Let the function F(¢) be a continuous monotonically increasing function,
bounded at zero., From the condition that the hydrodynamic pressure p and the
magnetic pressure I /8w be positive, it follows that the constants d and c must

L




be such that the inequalities

d+aF0) >0, c+mF®)>0

are satisfied,

time t = O, we assign

10) = 1o>0, WO0) = >0, F(O)=¥(0)=0, - (1.10)
then it will follow from the solution (1.8) that, at t = O, we have u = v = 0O,
Both the hydrodynamic and the magnetic pressure at the initial time increase with
the distance from the center of the ellipse. It follows from eqs.(1.7) that
" and " will be negative, and since f' (0) = ¢' (0) = 0, then ' and ¢' for
t > 0 will also be negative, For this reason, f and ¢ will decline from the
positive values fy and ¥, at t = O to zero values,

It is clear from the expression for the velocity components in the solu-
tion (1.8) and from our analysis of the behavior of the functions f and ¢ that
the motion under consideration will describe the compression of a plasma cylin-
der, at rest at the initial time, in the magnetic field.

In the general case, the system of differential eguations (1.7) can be
solved only by the numerical method, Simplifications are obtained by a special
selection of the constants a, b and by an additional assumption with respect to
the functions f and ¥,

Ifa=b>0and f =1, then the system of differential equations (1.7) re-
duces to a single equation which is integrated in quadratures:

[*=—ofnfr0") 4 ), (1.11)

Let us prescribe the initial conditions in the form f£(0) =fo, f' (0) = O.

For simplicity

—————— v ¥

let v = 3/2. Eguation (1.11) is easily transformed into an

27 .

equation of the first order, and for v = 3/2 we have




(P = — %l — flf — f0f* (1.12)

where
x = 8(m+ 2nf0) = =™ 4.
fo, ’ h M -4 2nfy fo

Let us consider the case whenm< O, n > O, m + 2nf, > O, Then, » > 0 and
f; > O, The right-hand side of egq.(1.12) will therefore be positive if f has a
value between f, and f;.

Integrating eq.(1.12) under the condition that f(0) = f,, we obtain

inl_2¥x ( V—d—ld—h _{_frifh =hth—2f .
”{ n+n(‘i Vi 3 zy;)] FGo—F (1.13)

The plus sign is taken if f; < f,; the minus sign, if f; > f,.

The solution (1.13) shows that the function f is a periodic function of t,
assuming values between f and f;.

In the presence of symmetry, the motion of any fluid particle of the gas
will be described by the equation r = f(t)r,/f,, where r is the coordinate of
the specified fluid particle at t = C,

It follows from the behavior of the function f that the particle will oscil-
late between the two extreme positions r, and r, = firy/fs, i.e., there will be
a pulsation of the plasma cylinder instead of a motion of the type of an accumu-
lation of the gas at the origin of coordinates and a dispersion of the gas
toward infinity,

We note that the oscillatory motions considered here are characteristic
only of magnetic gas dynamics at v # 2, In fact, if in our solution (1.8) we
set m = 0, ¢ = 0, we will obtain the solution of the equations of conventional
gas dynamics (Bibl.3). It will be clear from egs.(1.7) that, at m=c¢ = 0, /9L9
oscillatory motions without accumlation of gas at the origin of coordinates

will be absent.




At v = 2, egs.(1.5) permit a separation of variables without bounding at
hs, which we did in eq.(1.6). In this case, the solution of the system of equa-
tions (1.1) will be found to depend on two arbitrary functions, and to have the

form

where ho(x/f, y/¥) and F(o) are arbitrary functions of their arguments, while
n, d, a, and b are arbitrary constants.
The functions f and ¢+ satisfy the system of equations
F +anfy1=0,¢" + bnytj1 = 0.

2. Up to now we have assumed the magnetic field to be directed along the
Oz axis and the gas to be without motion in that direction.

Let us now consider the case when uniform expansion of the gas takes place
along the magnetic field, i.e., when the velocity component along the Oz axis
is of the form w = z/(t + t, ), The quantities p, p, and H do not depend on the
coordinate z, Under these assumptions, the system of equations of magnetic gas
dynamics, describing motion in the plane xQOy, will be the system of equations
(1.1) at v = 1.

Proceeding in analogy to Section 1, we may obtain the following solution of

the system of equations (1.1):

u=f7:z, v=%y, P=f—l¢_l(t+to)-ll"'(a),

P=fY"Y (¢4 to) " [d +nF (a)], H? = 8nf3)2 [c+ mF (a)], (2.1)
a=i x? b y’
ZF T Tw

where F(x) is an arbitrary function; while a, b, ¢, n, m, d, t, are arbitrary

constants., The functions f and ¥ are the solution of the system of equations
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1"+ anf WY (4 4 1) - amf 7 (8 10) = 0,
VoY )T L b (8 ) =0,

It can be proved by direct substitution that eq.(2.,1) is a solution of the

system of equations {1.1).
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